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8.1 DESIGN: CONTROL STRUCTURES

Ada Has a Rich Set of Control Structures

Ada, like most fourth-generation languages, has a richer set of control structures than third-
generation languages such as Pascal. These include

. A conditional

- An iterator (definite and indefinite)

. A case-statement

. Subprograms

. A goto-statement

- Facilities for handling exceptions

. Facilities for concurrent programming
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The last two have no corresponding Pascal constructs; the others are generalizations of
Pascal.

There Is One, All-Purpose Iterator

Ada provides one iteration statement, the 1oop, which handles definite, indefinite, and even
infinite iteration. Although it is quite general and solves some of the problems of previous
iterators, it is also quite baroque. The basic loop-statement has the syntax

loop (sequence of statements) end loop

This is an example of an infinite iterator; the sequence of statements is executed forever.
Unending loops are not often needed in programming, so Ada provides an exit-
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statement for terminating a loop. Executing an exit-statement anywhere within the body of
the loop will cause the loop to be aborted and control to be resumed after the end 1loop.
For example,! this code searches an array A for a key K:

I := A'First;

loop
if T > A’Last then exit; end if;
if A(I) = K then exit; end if;
I := I + 1;

end loop;

Notice that there can be any number of exits and that they are embedded at any depth within
the loop. Thus, Ada’s loop-statement provides mid-decision loops and, in fact, multiple mid-
decision loops. Furthermore, by using labels, an exit-statement can exit through any number
of levels of nested loops and can even exit from blocks (although not from subprograms).
Thus exit has some of the characteristics of a nonlocal goto.

Since exit-statements are so often the consequents of i f-statements, Ada provides a
special abbreviation for this case. Using it, the above loop can be written as follows:

I := A'First;

loop
exit when I > A’Last;
exit when A(I) = K;
I := I + 1;

end loop;

The point of this abbreviation is not the (approximately 10) characters it saves us from typ-
ing; rather, it was the designers’ goal that loop termination conditions be clearly marked.
Unfortunately, the exit can be buried quite deeply in the body of the loop and therefore
be hard to spot.

Ada carries this process a step further; since exit whens so often appear at the be-
ginning of loops, it permits these loops to be written in a form resembling Pascal’s while-
loops:

I := A’'First;
while I <= A’Last |
loop !
exit when A(I) = K;
I := I + 1;
end loop;

Notice that the while-phrase is just a prefix on the basic loop.
Ada provides another abbreviation for cases of definite iteration like that above. This is

'A'First and A’ Last are automatically bound to the lower and upper index values of the array A.
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accomplished by preceding the 1oop-statement with a for-phrase instead of the while-
phrase:

for I in A'’Range
loop

exit when A(I) = K;
end loop;

Unfortunately, this does not work exactly like the while-loop since the for-phrase automati-
cally declares the controlled variable T, thereby making it local to the loop. This means that out-
side of the loop it will not be possible to determine where K was found. To correct this problem,
we must use a different variable as the controlled variable so that we can save K’s location in I:

for J in A'’Range
loop
if A(J) = K then
I := J;
exit;
end if;
end loop;

Notice that we are back to using a simple exi t-statement inside an i f-statement.

Finally, observe that the above code does not allow us to determine whether K was ac-
tually found or not, because the control flow reaches the end loop in both cases. To solve
this problem, we must introduce another variable, as is shown in Figure 8.1.

declare Figure 8.1 Example of Ada Loop
Found: Boolean := False;
begin
for J in A’Range
loop
if A(J) = K then
I := J;
Found := True;
exit;
end if;
end loop;

if Found then

--Handle found case

else
--Handle not found case
end if;
end;
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B Exercise 8-1*: Discuss Ada’s 1oop-statement. Are the various abbreviations and spe-
cial cases justified? Are Ada’s loops potentially too unstructured? Design a better loop
syntax and defend it.

B Exercise 8-2*: Given that Ada has a goto-statement, discuss the value of also in-
cluding an exi t-statement. Conversely, discuss whether a goto-statement should have
been included given that Ada has an exi t-statement.

The Exception Mechanism Is Elaborate

Recall that Ada is intended for embedded computer applications. Since Ada programs may
be embedded in devices (such as aircraft) that must act reasonably under a wide variety of
conditions and in the face of failures, it is important that Ada programs be able to respond
to exceptional situations. This need is satisfied by Ada’s exception mechanism, which allows
us to define exceptional situations, signal their occurrence, and respond to their occurrence.

For example, suppose that a subprogram in an Ada program, Producer, is responsi-
ble for gathering data and storing it in a stack for later processing by another subprogram,
Consumer. If the data arrive more rapidly than expected, then Producer may attempt to
put more data in the stack than will fit. This is an exceptional condition, and it is important
that the program handle it appropriately.

Look again at the specification and implementation of the Stackl package in Chapter
7, Section 7.4; notice that we have specified an exception, Stack_Error, and that the
Push procedure raises this exception if we attempt to push onto a full stack. Thus, we have
defined a possible exceptional situation (a mistake in using Stack1) and have included code
to signal the occurrence of this situation. It remains to define a method of handling this ex-
ceptional situation.

In this example, we will suppose that recent data are more important than older data so
the proper way to handle stack overflow is to pop a few elements from the stack and then
add the new data. This can be accomplished by defining an exception handler; see Figure
8.2. If Push raises Stack_Error, then control proceeds directly to the exception handler
for Stack_Error, which is at the end of the Producer procedure. The execution of Push
and of the body of Producer is aborted.

Let’s look at this mechanism in more detail. Whenever we see a construct for binding
names, we should ask ourselves, “What is the scope of these names?” We can see that if ex-
ceptions had the same Algol-like scope rule as other identifiers in Ada, then the definition
of Stack_Error in Producer would not be visible in Push. Thus, exceptions must fol-
low their own rules.

The scope rule that exceptions do follow will be clearer when we discuss the propaga-
tion of exceptions. Suppose that Producer had not defined a handler for Stack_Error.
What would happen if Push raised Stack_Error? Ada says that since Producer does
not provide a handler for Stack_Error, the exception will be propagated to the caller of
Producer. If the caller defines a handler for Stack_Error, then it will be handled there;
otherwise the exception will be propagated to the caller’s caller, and so forth. This propa-
gation will continue until a handler is found or until the outermost procedure is reached, in
which case the program will be terminated.

Now we can see the essence of the scope rule for exceptions. If the exception is defined



8.1 DESIGN: CONTROL STRUCTURES 285

use Stackl;
procedure Producer (...);
begin

Push (Data);

exception
when Stack_Error =>
declare Scratch: Integer;
begin
for I in 1..3 loop
if not Empty then Pop(Scratch); end if;

end loop;
Push (Data) ;
end;

end Producer;

Figure 8.2 Definition of an Exception Handler

in the local environment, we go to its handler; otherwise we look for a handler in the caller’s
environment. We continue down the dynamic chain, going from each subprogram to its caller,
until we find an environment that defines a handler for the exception. Thus, with regard to
exceptions, subprograms are called in the environment of the caller, although in all other re-
spects they are called in the environment of definition. Although all other names in Ada are
bound statically, exceptions are bound dynamically. This makes exceptions something of an
exception themselves! It also makes Ada more complex since it violates both the Structure
and Regularity Principles.

Exceptions must be implemented almost exactly the way we have described them above.
When an exception is raised, a run-time routine must scan down the dynamic chain looking
for an environment containing a handler for the exception. During this scan the activation record
of any subprogram or block that does not define a handler for the exception must be deleted.
Thus we can see that an exception is something like a dynamically scoped nonlocal goto.

B Exercise 8-3: Explain why Ada’s exceptions violate the Structure Principle.

B Exercise 8-4**: Define and describe a statically scoped exception mechanism for Ada.
How is it less general than Ada’s mechanism?

B Exercise 8-5*: Evaluate the following argument for a dynamically scoped exception
mechanism: A dynamic scope rule is the only useful scope rule for an exception mecha-
nism. It is often the case that different callers of a subprogram will want to handle ex-
ceptions arising from that subprogram in different ways. If the handler for an exception
were bound in a subprogram’s environment of definition, it would be fixed for all time.
In that case, it might as well be made part of the subprogram.
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Parameters Can Be In, Out, or In Out

In previous chapters, we have seen a number of different modes for passing parameters to
subprograms, namely, value, reference, name, constant, and value-result. All of these tech-
niques have some advantages and some disadvantages; none of the languages we have stud-
ied seems to provide just the right set of modes. Ada, however, provides three parameter
passing modes that seem to come close to achieving this. We will discuss why later; first,
we will investigate these modes.

Ada’s parameter passing modes reflect the ways in which the programmer may intend
to use the parameter: input, output, or both input and output. These modes are indicated by
the reserved words in, out, or in out preceding the type of the formal parameter in the
formal parameter list. If the mode is omitted, then in is assumed.

In parameters are used to transmit information into a procedure but not out of it; they
are essentially the same as the constant parameters described in the original Pascal Report
(see Chapter 5, Section 5.5). Since these parameters are for input, the language allows only
read access to them; assignments to formal in parameters are illegal (i.e., in parameters act
like constants within the body of the procedure). '

Recall that pass as constant leaves it up to the compiler to determine whether a param-
eter’s value or address is actually passed. Ada does not go quite this far; it specifies that pa-
rameters of elementary types and pointers will always be copied (i.e., passed by value). For
certain other types, including composite types (e.g., arrays and records), the compiler may
choose either to copy the value (if it is short) or to pass its address. For the remaining types
the parameter is always passed by reference.?

Out parameters are just the opposite of in; they are used for transmitting results out of
a subprogram. In Ada 83 these parameters were considered write-only; within the subpro-
gram they could be used as a destination but not as a source. This was found to be incon-
venient, so Ada 95 allows an out parameter to be read within the subprogram (after, pre-
sumably, it has been stored into). Obviously, the actual parameter corresponding to an out
formal must be something into which it is meaningful to store, that is, a variable of some
type.

Out parameters are quite efficient: Just as for in parameters, elementary out parame-
ters are copied out, and most composite parameters may be either passed by reference or
copied out. Note that copying out the value of an out parameter is essentially the result half
of pass by value-result (Chapter 2, Section 2.3).

The remaining parameter passing mode is in out; this is used for parameters that are
to be used as both a source and a destination by the subprogram. Since the actual parameter
is potentially a destination, it must be a variable of some sort, just as for out parameters.

The same implementation methods are used for in out parameters: For elementary
values the values are copied in on call and out on return, which is essentially pass by value-
result. Most composite parameters may be passed by reference or value-result, compiler’s
choice.

Ada seems to have solved the problems that we saw in the parameter passing modes of
FORTRAN, Algol-60, and Pascal. The reason is that Ada’s solution is more orthogonal, that

2 The precise distinction between by-copy, by-reference, and other parameters is too complicated to repro-
duce here.



8.1 DESIGN: CONTROL STRUCTURES 287

is, it better separates the independent functions. In the case of parameters, there are two
issues:

1. How the parameter is to be used (i.e., input, output, or both input and output)
2. How the parameter transmission is to be implemented (i.e., pass by reference, or pass by
value and/or result)

The first issue is a logical issue, that is, it affects the input-output behavior of the program.
The second issue is a performance issue, that is, it affects the efficiency of the program. Ada
allows the programmer to resolve the first issue (by specifying a parameter as in, out, or
in out). It reserves to the compiler the right to resolve the second issue since requiring
the programmer to make this choice would introduce a machine dependency into the pro-
grams (and violate the Portability Principle). The other languages we have discussed garbled
these two issues; Ada’s orthogonal solution can be visualized as follows:

Copying o o °
Compiler
decides
Reference ° ° °
] ] ] ]
In Out In out
— J

T
Programmer decides

Ada slightly mixes two other issues that should be orthogonal, namely, the reference/copying
issue and the parameter’s type, since it specifies that elementary parameters are always copied.

How does the compiler decide whether to pass a parameter by reference or by copying?
This is easy to analyze. Suppose that a composite parameter occupies s words (or whatever the
units of storage may be) and that each component of the parameter occupies one word. This
would be the case if, for example, the parameter were an array of integers. Further, suppose that
during the execution of the subprogram components of this parameter are accessed 7 times. We
can compute C, the cost of passing the parameter by copying, and R, the cost for reference.

If the parameter is copied, then 2s memory references will be required to transmit it and one
memory reference will be required for each of the succeeding n accesses to components. Hence,

C=2s+n

If the parameter is passed by reference, then one memory reference is required to trans-
mit it (assuming an address fits in one storage unit), and two are required for each of the
succeeding n accesses to components. The latter is true because a reference parameter must
be accessed indirectly.> Hence,

R=2n+1

3 We are ignoring the possibility that the compiler might optimize code by keeping the address of the actual
parameter in a register across several accesses.
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Now we can determine the conditions under which it is less expensive to pass a param-
eter by reference than by copying. R < C whenever 2n + 1 < 25 + n, hence R < C whenever
n <2s — 1. We can see the regions where reference or copy is better in the following diagram:
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Unfortunately, since n depends on the dynamic behavior of the program, it is usually
impossible for a compiler to determine this value. Therefore, the decision of whether to use
value or reference parameters must be based on some plausible assumptions. For example,
if we assume that the parameter is an array and each array element is referenced once, then
n = s (if each element occupies one storage unit), C = 3n, and R < C; so pass by reference
is less expensive. When will copying be less expensive than pass by reference? Note that
R > C when n > 25 — 1. Therefore, copying is less expensive if on the average each array
element is accessed at least twice.

B Exercise 8-6*: s ita good or a bad idea that Ada specifies that elementary parameters
always be copied (passed by value and/or result)? Discuss the factors involved, includ-
ing representation independence, efficiency, and predictability.

B Exercise 8-7: Write a subprogram whose results differ depending on whether a given
composite parameter is passed by reference or by copying. This permits us to determine
the parameter passing methods used by a compiler (and also shows that Ada programs
may be implementation sensitive).

H Exercise 8-8*: A program that depends on the implementation of Ada, such as the one
you wrote in the previous exercise, is not considered legal Ada. Unfortunately, it is very
difficult for a compiler to check for this situation. Is this a good design decision? Discuss
the philosophy of defining errors that cannot be practically checked by a compiler. Is there
any alternative? Discuss and evaluate the possibilities.

B Exercise 8-9: The above analysis of the pass by reference/pass by copy trade-off ap-
plies to in and out parameters (i.e., parameters that are copied once). Extend this analy-
sis to in out parameters, which must be copied twice. Assume that an address takes
two units of storage (e.g., two bytes) rather than one.

Position-Independent and Default Parameters

Suppose we are implementing an Ada package to draw graphs. The package might contain
this specification of a routine to draw the axes of the graph:
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procedure Draw_Axes (X_Origin, Y Origin: Coord;
X_Scale, Y_Scale: Float; X_Spacing, Y _Spacing: Natural;
X_Logarithmic, Y_Logarithmic: Boolean;
X _Labels, Y_Labels: Boolean; Full_Grid: Boolean);

Procedures with a large number of parameters, such as this, are not uncommon in subpro-
gram libraries that are trying to achieve generality and flexibility. A call to Draw_Axes can
look like this:

Draw_Axes (500, 500, 1.0, 0.5, 10, 10,
False, True, True, True, False);

It is very difficult to tell the meanings of the parameters from this call; even if programmers
know the purpose of Draw_Axes, they will have to look up its definition to find out the
meaning of the parameters.

The problem with the above procedure specification is that the order of the parameters
is essentially arbitrary. Although it makes sense that an x-related parameter always precedes
the corresponding y-related parameter, there is no particular reason why the scale factors
should precede the spacings or the requests for labels follow the requests for logarithmic
spacing. People remember things most easily when they are related meaningfully. When there
are no meaningful relationships, the only alternate is rote memorization, which is error-prone.

Operating system command languages long ago found a solution to the problem of pro-
grams with many parameters: position-independent parameters. The basic idea is that the
parameters can be listed in any order. Then, to determine which is which, a name is associ-
ated with each parameter; this name identifies the parameter’s function. Our Draw_Axes
example can be written using position-independent parameters in Ada as follows:

Draw_Axes (X_Origin => 500, Y Origin => 500,
X_Spacing => 10, Y_Spacing => 10, Full Grid => False,
X _Scale => 1.0, Y Scale => 0.5,
X Label => True, Y Label => True,
X_Logarithmic => False, Y _Logarithmic => True );

This is more readable and much less prone to mistakes than the position-dependent version.
Position-independent parameters are another illustration of the Labeling Principle.

The Labeling Principle

Avoid arbitrary sequences more than a few items long; do not require the programmer
to know the absolute position of an item in a list. Instead, associate a meaningful label
with each item, and allow the items to occur in any order.

We have already seen several examples of this principle: All programming languages
provide symbolic names for variables rather than requiring the programmer to remember the
absolute memory location of the variables. We have also seen (Chapter 5, Section 5.5) the
advantages of Pascal’s labeled case-statement over earlier unlabeled case-statements.

Ada provides an additional facility, also suggested by operating system control lan-
guages, that can improve the readability of our call on Draw_Axes; these are default para-
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meters. The motivation for these is simple: In an attempt to be general, Draw_Axes pro-
vides many different options. There are several of these that will be rarely used; for exam-
ple, most users will not want a full grid or logarithmic axes. Unfortunately, all users must
specify these options, if only to disable them, in order for them to be available to a small
fraction of the users. This is actually a violation of the Localized Cost Principle, which says
that users should not have to pay for what they do not use.

Default parameters solve this violation of the Localized Cost Principle by permitting the
designer of a subprogram to specify default values that are supplied for parameters if the
corresponding actuals are omitted. The following is a reasonable set of defaults for
Draw_Axes:

procedure Draw_Axes (X_Origin, Y_Origin: Coord := 0;
X _Scale, Y_Scale: Real := 1.0;
X_Spacing, Y_Spacing: Natural := 1;
X_Label, Y_Label: Boolean := True;
X_Logarithmic, Y_Logarithmic: Boolean := False;
Full_Grid: Boolean := False );

This declaration permits us to write the preceding call to Draw_Axes in a much more com-
pact form:

Draw_Axes (500, 500, Y_Scale => 0.5, Y Logarithmic => True,
X_Spacing => 10, Y_Spacing => 10);

Notice that position-dependent and position-independent parameters can be mixed in a sin-
gle call; the x and y origins are specified position dependently in the above call.

Position-Independent and Default Parameters
Complicate Operator Identification

Of course, all this flexibility does not come without a cost. A major part of the cost is the
increased complexity of the language manual and the greater number of constructs that the
programmers must learn. In Ada, however, there is a less obvious cost that results from fea-
ture interaction, in this case, the interaction of overloading with position-independent and
default parameters.

Recall that an overloaded subprogram can have several meanings in one context; the
compiler determines the meaning intended on the basis of the types of the parameters and
the context of use of the subprogram. Consider the following procedure declarations, both
occurring in the same scope:

procedure P (X: Integer; Y: Boolean False) ;
procedure P (X: Integer; Y: Integer := 0);

The procedure P is overloaded because it bears two meanings at once. The rules of opera-
tor identification tell us that P (9, True) is a call on the first procedure and P (5, 8)
is a call on the second. Notice, however, that we have provided a default value for Y in both
procedure declarations. What is the meaning of the call P (3) ? It could be either one since




8.1 DESIGN: CONTROL STRUCTURES 291

we have omitted the only parameter that distinguishes the two overloadings. In fact, because
the call P (3) is ambiguous, Ada does not allow the two procedure declarations shown above.
A set of subprogram declarations is illegal if it introduces the potential for ambiguous calls.

These potential ambiguities can arise in many ways. Consider the following declara-
tions:

type Primary is (Red, Blue, Green);
type Stop_Light is (Red, Yellow, Green);

procedure Switch (Color: Primary; X: Float; Y: Float);
‘procedure Switch (Light: Stop_Light; Y: Float; X:Float);

These look quite different, and there are no defaults. Unfortunately, the call
Switch (Red, X => 0.0, Y => 0.0);

is ambiguous, so the declarations are illegal. Here we can see the interaction of two over-
loadings—an overloaded enumeration and an overloaded procedure.

The rules that specify what overloadings are allowed are actually quite a bit more com-
plicated than we have described. Suffice it to say that both the human reader and the com-
piler can have difficulty with a program that makes extensive use of overloading and posi-
tion-independent and default parameters.

B Exercise 8-10: Explain in detail why the preceding call of Switch is illegal.

B Exercise 8-11**: We have seen the benefits both of overloading and of position-
independent and default parameters. We have also seen some of the complications that
result from the interaction of these features. Has Ada made the right choice? Either pro-
pose your own alternative and argue that it is better than Ada’s or show that Ada’s solu-
tion is better than the alternatives.

Ada Permits Concurrent Execution

When people set out to accomplish some task, it is often more efficient and more convenient
to do several things at the same time. For example, one person may read a map while the
other drives. There would not be much point in finishing the driving before the map read-
ing is started, and it would not be very efficient to do all of the map reading before starting
the driving. The same holds true in programming; therefore, Ada provides a tasking facility
that allows a program to do more than one thing at a time.

Let’s consider an example. Suppose we have a small, stand-alone word-processing sys-
tem that allows users to print one file while they are editing another. This is programmed in
Ada by defining two disjoint tasks, say Print and Edit; see Figure 8.3. Here we have a
procedure, Word_Processor, with two local tasks, Edit and Print. Notice that a task
is declared very much like a package, with a separate specification and body. In this case,
there are no public names so there is nothing in the specification.

When we call Word_Processor, all local tasks are automatically initiated. That is,
we do three things at once: We begin executing the bodies of Word_Processor, Edit,
and Print. We can assume that Edit does its job of communicating with the user and
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procedure Word Processor is
task Edit; end Edit;
task body Edit is
begin
--—edit the file selected

end;
task Print; end Print;

task body Print is
begin
--print the file selected

end;

begin
——initiate tasks and wait for their completion
end Word_Processor;

Figure 8.3 Noncommunicating Tasks

editing the file while Print does its job of listing another file on the printer. What does
Word_Processor do? In this example, not very much. Since the body of the procedure
is empty, we immediately encounter the end and try to return. Ada, however, prevents a
procedure from returning as long as it has active local tasks. Hence, Word_Processor
will wait as long as Edit and Print are executing. When they have both finished (by
reaching their end-statements), then Word_Processor will be able to return to its caller.
This can be visualized as follows:

Word_
Processor
Edit Print

L

Only when Edit, Print, and the body of Word_Processor have all reached their ends
can Word_Processor exit.

Why does Ada require all local tasks to finish before a procedure can exit? Suppose that
Word_Processor had some local variables; these are visible to Edit and Print be-
cause they are declared in the same environment. Consider what happens when
Word_Processor exits; like all procedures, its activation record is deleted. Any references
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in Edit and Print to the local variables of Word_Processor will now be meaningless
dangling references. One alternative is to preserve Word_Processor’s activation record
until Edit and Print have finished. This in turn precludes using a simple stack discipline
for activation record allocation and deallocation.? The alternative is to delay Word_Proces-
sor’s return until it can be done safely; this is an example of the Security Principle.

B Exercise 8-12*: Discuss alternative solutions to the dangling reference problem. Either
investigate nonstacked activation records, or suggest another approach that prevents dan-
gling references and still permits the use of a stack.

Tasks Synchronize by Rendezvous

We have seen an example of two tasks that execute concurrently, but do not communicate.
This is not usually the case; consider our driving and map-reading example. If the concur-
rent map reading is to be useful, it will be necessary for the map reader to communicate di-
rections to the driver. It may even be necessary for the driver to synchronize with the navi-
gator by pulling off the road and waiting for the navigator to decide where they should turn
next.

The same is the case in programming. Suppose we have an application that retrieves
records from a database, summarizes them, and prints the results. Since the retrieval and
summarization processes are fairly independent, we can implement them as tasks that run
concurrently. However, they will have to communicate; the Summary task will have to tell
the Retrieval task which record it wants, and the Retrieval task will have to trans-
mit the records to the Summary process when they are found. An outline of the program
appears in Figure 8.4.

Notice that the specification of Retrieval contains two entry declarations. We can
see that these have parameters very much like procedures, and, in fact, they can be called
like procedures. For example, the body to Summary might look like this:

task body Summary is
begin

Seek (ID);
Fetch (New_Recd);

end Summary;

The Seek call tells Retrieval to find the record in the database, and the Fetch call puts
the sought record’s value in New_Recd. Although procedures and entries are similar in some
ways, there are important differences.

4 This would be an example of a retention strategy, such as discussed in Chapter 6, Section 6.2.
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procedure DB_System is Figure 8.4 Communicating Tasks
task Summary; end Summary;
task body Summary is
begin
. --generate the summary

end;

task Retrieval;
entry Seek (K: Key);
- entry Fetch (R: out Recd);
end Retrieval;

task body Retrieval is
begin
. --seek record and return it

end;

begin
-—await completion of local tasks
end DB_System;

Recall how a normal procedure call works: When one subprogram calls another, the pa-
rameters are transmitted from the caller to the callee, the caller is suspended, and the callee
is activated. The caller remains suspended until the callee returns; at that time the results are
transmitted from the callee back to the caller, the callee is deactivated, and the caller is re-
sumed (i.e., reactivated).

When one task calls an entry in another, it transmits parameters very much like a pro-
cedure call. The difference is that once the callee accepts the parameters, the caller contin-
ues executing; it is not suspended. The two tasks remain active and continue to execute con-
currently. Thus, the call Seek (ID) is more properly viewed as a message-sending operation
in which the message (ID) is putinto the entry Seek where itis available to Retrieval.
In fact, an entry is often called a mailbox or message port.

How does a task accept a message? This is accomplished with an accept-statement,
which has the syntax

accept (name) ((formals)) do (statements) end (name);
For example, the body of Retrieval might look like the following:

task body Retrieval is
begin
loop
accept Seek (K: Key) do
RK := K;
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end Seek;

- -seek record RK and put in Recd _Value

accept Fetch (R: out Recd) do

R := Recd_Value;
end Fetch;
end loop;

end Retrieval;

Notice that Retrieval is written as a loop that alternatively seeks a record and returns its
value. The first accept-statement accepts a message from the Seek mailbox and binds the
formal parameter K to this message.

What happens if Retrieval reaches this accept-statement before Summary has sent
the message? Does Retrieval come away empty handed? No, just as in our map-reading
example, it “pulls over to the side of the road” and waits for a message in Seek. In other
words, it suspends itself awaiting the arrival of a message in the mailbox Seek. Then, when
Summary sends the message, it will be accepted and both tasks will proceed concurrently.
Similarly, if Summary attempts to transmit Seek (ID) before Retrieval is ready to ac-
cept it, Summary will be suspended until Retrieval accepts a message from Seek. Thus,
a message is only actually transmitted when the entries to which the sender calls and from
which the receiver accepts are the same. This meeting is called a “rendezvous” in the Ada
literature. The rendezvous may never take place, so one or both tasks may wait forever, a
situation called dead-lock.

The structure of the database system is pictured in Figure 8.5. The message ports (mail-
boxes, entries) are shown as circles. You may be surprised to see that the arrow for Fetch
goes from Summary to Retrieval. This is because Summary places a message in Fetch
to request that the value of the record be put in an output parameter (New_Recd); Re-
trieval accepts this message and puts the value in New_Recd.

Guards and Protected Types Control
Concurrent Access to Data Structures

The Ada 83 task model was found to have some limitations. To understand these, let’s ex-
tend our stand-alone word-processing example. As it stands, the two tasks do not commu-

DB_System Figure 8.5 Structure of Concurrent Database System
Y
L Seek ¢
F—>0—>
Summary Retrieval
O—>
| Fetch l
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nicate; more realistically we would expect Edit to send documents to Print for printing,
and this could be accomplished by a rendezvous. For example, Print could be given an
entry for the document to be printed and an entry to tell it to terminate:

task Print is
entry Send (D: Document) ;
entry Terminate;

end Print;

The body would then be a loop waiting for documents to print or for a Terminate signal:

task body Print is
begin
loop
select
accept Send (D: Document) do
print the document
end Send;
or accept Terminate do exit end Terminate;
end select;
end loop;
end Print;

The Edit task requests the printing of a document by Print.Send (D).

This works, but the tasks are quite tightly coupled. Since printing is a comparatively
slow operation, we can expect that sometimes the user will ask to print a second document
before the printing of the first has been completed. In this case, Print will not have re-
turned to the accept Send, and so when Edit gets to Print.Send (D) its execution
will be blocked until Print has completed the first document.

As you probably know, the system can be made more loosely coupled by putting a buffer
between the two tasks. To accomplish this we can use the Communication package de-
scribed in Section 7.4, which implements a circular buffer. To hide the implementation
details two new procedures, Send (used by Edit) and Receive (used by Print), are
defined (Figure 8.6).

package Communication is
Size: constant Integer := 100;
Avail: Integer range 0 .. Size := 0;
procedure Send (D: in Document) ;
procedure Receive (D: out Document) ;

private
In_Ptr, Out_Ptr: Integer range 0 .. Size-1 := 0;
Buffer: array (0 .. Size-1l) of Document;

end Communication;

Figure 8.6 Specification of Communication as a Package
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We have also added a variable Avail that indicates the number of documents in the
buffer, so that we will not Send to a full buffer or Receive from an empty one. (The Edit
and Print tasks have the responsibility of doing these checks.) A simple implementation
of the Communication package is shown in Figure 8.7.

Unfortunately, this implementation is incorrect, since the Print task might be exe-
cuting Receive at the same time that the Edit task is executing Send. Thus it is pos-

sible for one task to be executing Avail := Avail - 1 at the same time the other
is executing Avail := Avail + 1; the result is that the variable may be updated
incorrectly.

B Exercise 8-13*: Show in detail how Avail can be updated incorrectly and explain the
consequences. Could it be too large? Too small? Either?

One way to solve this problem is to make Communication a task, and make Receive
and Send guarded entries (Figure 8.8).

The accept-statements have guards when (condition) on them so that they will ac-
cept a message only if the condition is satisfied. If the producer Edit attempts to Send to
a full buffer, or if the consumer Print tries to Receive from an empty buffer, the attempt
will block, until the other task changes the situation and allows it to proceed. Further, since
Communication is now an independent task, it can be executing only one of the entries
Send and Receive at a time, and inconsistent updating of Avail is not possible. Unfor-
tunately we now have three tasks, Edit, Print, and Communication, which manages
the buffer between the other two.

This solution solves the problem, but at the expense of an additional task that, in effect,
actively waits for a Send or Receive request. This is an inefficient way to solve a com-
mon problem, controlling concurrent access to a shared data structure, and so Ada 95 has an
additional construct, the protected type, which accomplishes it more directly; Figure 8.9
shows a definition of Communication as a protected type.

package body Communication is Figure 8.7 Implementation of

. Communication as a Package
procedure Send (D: in Document) ;

begin
Buffer (In_Ptr) := D;
In Ptr := (In_Ptr + 1) mod Size;
Avail := Avail + 1;

end Send;

procedure Receive (D: out Document) is

begin
D := Buffer (Out_Ptr);
Out_Ptr := (Out_Ptr + 1) mod Size;
Avail := Avail - 1;

end Receive;

end Communication;
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task Communication is
entry Send (D: in Document) ;
entry Receive (D: out Document);
entry Terminate;

private
Size: constant Integer := 100;
Avail: Integer range 0 .. Size := 0;
Buffer: array (0 .. Size-1) of Document;
- In_Ptr, Out_Ptr: Integer range 0 .. Size-1 := 0;

end Communication;
task body Communication is
begin
loop
select

when Avail < Size accept Send (D: in Document)

do
Buffer (In_Ptr) := D;
In_Ptr := (In_Ptr + 1) mod Size;
Avail := Avail + 1;
end Send;
or when Avail > 0 accept Receive (D: out Document)
do
D := Buffer (Out_Ptr);
Out_Ptr := (Out_Ptr + 1) mod Size;
Avail := Avail - 1;

end Receive;

or accept Terminate do exit end Terminate;
end select;
end loop;
end Communication;

Figure 8.8 Communication as a Task

Since this is a type definition, it defines a template, which must be instantiated with an
object declaration to create an actual buffer. For example,

Channel: Communication;

creates an instance of Communication. Within the scope of this declaration the Edit and
Print tasks can communicate by means of Channel.Send (D) and Channel.Re-
ceive (D) requests. The effect of Buf fer belonging to a protected type is that only one
of its entries can be executed at a time, which ensures that the buffer will be managed con-
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protected type Communication is
entry Send (D: in Document) ;
entry Receive (D: out Document) ;

private
Size: constant Integer := 100;
Avail: Integer range 0 .. Size := 0;
Buffer: array (0 .. Size-1) of Document;
In Ptr, Out_Ptr: Integer range 0 .. Size-1 := 0;

end Communication;

protected body Communication is

begin
entry Send (D: in Document) when Avail < Size is
begin
Buffer (In_Ptr) := D;
In Ptr := (In_Ptr + 1) mod Size;
Avail := Avail + 1;
end Send;
entry Receive (D: out Document) when Avail > 0 is
begin
D := Buffer (Out_Ptr);
Out_Ptr := (Out_Ptr + 1) mod Size;
Avail := Avail - 1;

end Receive;
end Communication;

Figure 8.9 Communication as a Protected Type

sistently, but without the expense of a third task. If one of the entries is active, then a call
on the other will block until the first is done.

® Exercise 8-14**: We have only touched on the essentials of Ada’s task facility. Look
up concurrency in the Ada Reference Manual and evaluate its other features. Are there
too many features? Is the language too complex in this area? Are there too few features?
Are there important things that cannot be easily accomplished with Ada’s tasks? Explain
or defend your answers.

8.2 DESIGN: SYNTACTIC STRUCTURES

Ada Follows Pascal in the Algol Tradition

In most respects Ada’s syntactic conventions follow the Pascal tradition (which is in turn in
the Algol tradition), although in some cases they have been made more systematic. For ex-

e
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ample, in Chapter 6 we saw that blocks can be considered degenerate procedures. This sim-
ilarity is reflected in Ada’s syntax for blocks and procedures:

declare procedure (name) ({formals)) is
(local declarations) (local declarations)

begin begin
(statements) (statements)

exceptions exceptions
(exception handlers) (exception handlers)

end; end;

The difference between procedures and blocks is that procedures have a name and formals
(and hence can be called from different contexts with different parameters) whereas blocks
do not (since they are “called” where they are written). We have also seen that functions and
task bodies follow a similar pattern.

There are other cases where Ada has made syntactic similarities reflect semantic
similarities. For example, Ada’s notation for a variant record, which defines several dif-
ferent cases for a record, has been made to look like a case-statement. Also, the nota-
tion for position-independent actual parameters is similar to the notation for initializing
arrays and other composite data structures. These are examples of the Syntactic Consis-
tency Principle.

The Syntactic Consistency Principle

Things that look similar should be similar; things that are different should look
different.

Another difference between Pascal and Ada is the use of semicolons. In Pascal, as in
Algol, semicolons are separators: they come between statements. Thus, there is a similarity
between infix operators separating their operands:

(El + E2 + E3)
and semicolons separating statements:
begin S; ; S, ; S; end

This convention creates some minor maintenance problems since if we need to insert a
new statement before the end in a compound statement like the following:

begin
S1i
Sz
S3

end

we must remember to add a semicolon to S3. Fortunately, both Algol and Pascal allow empty
statements, SO we can write
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begin
S1;
Sz
S3;

end

You cannot see it, but there is an empty statement between the last semicolon and the end. Many
Pascal programmers terminate each statement with a semicolon, which simplifies editing.

Ada has adopted a different convention, a terminating semicolon, for the reason de-
scribed above, and also because some studies suggest that a terminating semicolon is less
error-prone. Both statements and declarations in Ada end with semicolons, even before ends,
and there is no need for an empty statement.

Ada Uses a Fully Bracketed Syntax

Recall that one of the contributions of Algol was the compound statement, which allows
statements to contain other statements. This led to the ability to structure programs hierar-
chically and spurred interest in structured programming. The compound statement idea had
a flaw, however; look at these Pascal constructs:

for i := ... do begin ... end

if ... then begin ... end else begin ... end
procedure ... begin ... end

function ... begin ... end

case ... of a: begin ... end; ... end

while ... do begin ... end

with ... do begin ... end

record ... end

Notice that all of these compound structures end with the same keyword, end. Therefore, if
the programmer omits an end, it is very likely that the compiler will discover it only at the
end of the program and that all the begins and ends will be matched up incorrectly. Simi-
larly, it can be quite difficult for a human reader looking at an end to tell exactly what it is
ending.

One solution to this problem is to use a variety of different kinds of brackets. For in-
stance, in mathematics we have (...), {...}, [...]. About the time Pascal was being designed,
language designers were experimenting with this solution to the begin—end problem, al-
though the ideas go back to at least Algol-58. The result—a fully bracketed syntax—arrived
too late for Pascal, but was adopted by Ada 83. This means that each construct has its own
kind of brackets; for example, in Ada we have

loop ... end loop
if ... end if
case ... end case

record ... end record
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For constructs that are named, such as subprograms, packages, entries, and tasks, a unique
bracket is made by attaching the name to ‘end’:

function <{(name) ({formals)) is ... begin ... end (name);
procedure (name) ({formals)) is ... begin ... end (name);
package (name) is ... end (name);

package body (name) is ... end (name);

accept <(name) ({formals)) do ... end (name);

This allows the compiler to do better error checking since it can ensure that an end goes
- with the correct declaration.
The fully bracketed syntax interacts with the if-statement in an interesting way: It is
common to break the flow of control into n + 1 paths Py, P», ..., P,, P, on the basis of con-
ditions Cj, C, ..., C,. This leads to a program that looks like the following (where n = 3):

— if C; then
Py
— else
— if C, then
P
— else
if C3 then
Py
else
Py
end if;
— end if;
— end if;

Although the indenting accurately reflects the way in which the i f-statements are built up
from other i f-statements, it does not accurately reflect the intentions of the programmer,
which is that there are four similar cases. It actually violates the Structure Principle. For this
reason Ada provided a case-statement-like syntax for expressing these else-if chains:

— if C; then
Py
elsif C; then
P
— elsif Cz; then
Py
- else
Py
— end if;

This is an idea that originated in the 1960s in LISP (which is discussed in Chapters 9, 10,
and 11). It conforms better to both the Structure Principle and the Syntactic Consistency Prin-
ciple at the cost of some increased syntactic complexity (thus slightly violating the Simplicity
Principle). It is typical of the trade-offs that must be made in language design.
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8.3 EVALUATION AND EPILOG

Ada Is an Engineering Trade-Off

Ada is certainly not a perfect language. We have seen that in many cases the designers
of Ada had to trade off satisfying one principle for satisfying another. In many cases, the
trade-off was implicit: providing some facility versus keeping the language simple. Trade-
offs of this sort are common in any kind of engineering design, and different designers
will make the trade-offs in different ways, depending on the weight they attach to dif-

- ferent factors. For example, adding an air conditioner to a car will decrease its fuel effi-
ciency. Whether this is a good trade-off or not depends a great deal on the climate in
which the car will be used, the cost of fuel, and the personal preferences (or values) of
the occupants. (Recall the distinction between efficiency and economy discussed in Chap-
ter 4, Section 4.3.)

DoD Has Disallowed Subsets

One solution that has been adopted in many engineering problems is to provide options; this
allows customers to make the trade-offs for themselves. For example, air-conditioning on a
car is usually an option. Unfortunately, this solution was not permitted for Ada; the Depart-
ment of Defense said that there would be no Ada subsets or supersets. In other words, there
would be only one Ada language; there are no “optional extras.”

Why was this done? The Department of Defense decided that the existence of language
dialects would seriously hamper portability. In other words, if different dialects of Ada pro-
vide different subsets of its facilities, then it would be possible to port a program only if the
destination Ada compiler provided the facilities used in the program.

Another reason for disallowing subsets was the discipline it imposed on the language
designers. Language designers would be less likely to include highly complex, expensive, or
hard-to-implement features in a language if they knew that such features would have to be
provided in every implementation. It also discouraged them from designing in features that
they were not sure how to implement (as happened in Algol-68).

We have seen that Ada 95 has relaxed these restrictions. The “core language” still must
be implemented in its entirety, but there are six optional “annexes,” which define, in effect,
standard supersets of the core language.

Ada Has Been Criticized for Its Size

Ada is not a small language. Although there is no accepted way to measure the size of lan-
guages, it is significant that while Ada 83’s context-free grammar is some 1600 tokens long,
Pascal’s is about 500 and Algol-60’s is about 600. Of course, Ada provides some important
facilities not included in Pascal and Algol-60, such as packages and tasks. But this does not
necessarily mean that Ada’s size is acceptable.

Ada 95 is even larger, due to its inclusion of object-oriented programming facilities and
many other extensions. In addition, grammar-based measures such as these ignore the size
of Ada’s standard library, which is huge compared to other languages’.
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Some computer scientists, such as C. A. R. Hoare, have suggested that Ada is so big
that few programmers will ever master it. In his 1981 Turing Award paper, he said, “Do not
allow this language in its present state to be used in applications where reliability is criti-
cal. .. .” Hoare has suggested that “by careful pruning of the Ada language, it is still possi-
ble to select a very powerful subset that would be reliable and efficient in implementation
and safe and economic in use.” He makes an important observation: “If you want a language
with no subsets, you must make it small.” The size of Ada remains an issue of vigorous de-
bate. These debates are reminiscent of the debates in the late 1960s and early 1970s about
PL/I’s size, which were partly responsible for the success of Pascal.

Ada Has Been Moderately Successful

Since its introduction in 1983 and the development of reliable compilers in the late 1980s,
Ada 83 has become widely used by the U.S. Department of Defense and related industries.
However, Ada has not been as successful in universities and the consumer software indus-
try, where less secure languages such as C and C+ + have become popular. Although com-
parison studies have shown that Ada programs are significantly less expensive to develop
and maintain than C or C++ programs, use of the latter languages has been encouraged by
social factors other than the economics of program development. Among these factors are
the widespread use of Unix (programmed in C) in universities (especially prestigious ones)
and the comparatively small economic costs to the manufacturer of consumer software fail-
ures. We can expect Ada to remain an important language in defense-related industries, but
it is not clear how well it will establish itself outside that application area.

Featuritis Is a Trap for the Language Designer

There is a kind of entropy in the evolution of programming languages that causes even the
best designs to degenerate over time. This problem is sometimes called “featuritis” or the
“Creaping Feature Syndrome”; it is especially prevalent in languages that are designed or
maintained by committees. Featuritis arises from the fact that it is inherently easier to de-
fend adding a feature to a language than to oppose it. This is because the benefits of adding
a feature often outweigh the consequent increase in complexity, and because the benefits are
specific and clear, whereas the costs are often general and hidden. (For an example, review
our discussion of adding a complex type to Algol-60, Section 3.4.) However, the cumula-
tive effect of many such decisions, made independently and without regard for each other,
can be a large, ungainly language with rampant feature interaction. Ironically, it often hap-
pens that the excessive complexity of the language is eventually recognized, which moti-
vates the designers to reject genuinely worthwhile features, which could have been included
had less useful features been rejected.

Resisting the Creaping Feature Syndrome demands enormous discipline (and stubborn-
ness!) from the individual or committee responsible for the final design of the language. They
must be willing to turn their backs on individually attractive features for the sake of the com-
plete language. One way of enforcing this discipline is to adopt at the start some absolute
maximum complexity for the language, as measured by grammar size, for example. Then,
once this complexity limit is reached, no other features can be added unless already adopted
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features are eliminated or simplified. Such methods are widely used in other engineering dis-
ciplines; for example, absolute weight and power consumption limits may be placed on em-
bedded computers.’

Featuritis is also combatted by having separate groups responsible for feature design and
language design; with the entire language in their view, the language designers can select
the most useful features from an array of available features, and integrate them into a uni-
fied whole. Several language designers have noted that somewhat orthogonal skills are re-
quired for feature design and language design. Pascal illustrates how the two complement
each other: Hoare designed many of the individual features (e.g., finite sets, records, labeled
case-statements); Wirth combined them into an integrated language.

Featuritis has even greater virulence in the evolution of programming languages, for once
a feature has been included in a language and programmers have used it, it is nearly impos-
sible to eliminate. Indeed, there are important economic reasons for “upward compatibility.”
Thus we have the extremely slow process of eliminating features from a standardized lan-
guage such as FORTRAN (discouraging their use in one standard before they can be elim-
inated in the next). FORTRAN began as a simple language, but has become more complex
in time. Likewise, Algol. Therefore Pascal was designed as a simple language, but it has also
grown in complexity. Ada began as a complex language, but nevertheless has become even
more complex (see especially Section 12.6 on object-oriented extensions to Ada). As a con-
sequence, often the only solution to featuritis is to start over from scratch (e.g., Wirth’s de-
sign of Pascal).

Characteristics of Fourth-Generation Programming Languages

Some of the characteristics of the fourth generation® are simply a consolidation and correc-
tion of certain of those of the third generation. In other respects the fourth-generation lan-
guages provide important new facilities, such as linguistic support for information hiding and
concurrent programming. We consider in turn each of the structural domains.

The most important contribution of the fourth generation lies in the domain of name
structures. In fact, fourth-generation programming language is essentially synonymous with
data abstraction language, since the primary characteristic of this generation is the provi-
sion of an encapsulation facility supporting the separation of specification and definition, in-
formation hiding, and name access by mutual consent. Most of these languages allow en-
capsulated modules to be generic (or polymorphic), thus leading to an operator identification
problem such as we saw in Ada. The optimum mix between flexibility and simplicity has
yet to be determined (see also Chapter 12).

The second area in which the fourth generation is distinctive is control structure, since
it is characteristic of this generation to provide for concurrent programming. Most fourth-
generation languages use some form of message passing as a means of synchronization and

3 For more on programming language metrics, see B. J. MacLennan, “Simple Metrics for Programming Lan-
guages,” Inform. Process. Manage. 20, 1-2 (1984), pp. 209-221.

6 We are discussing here the characteristics of fourth-generation programming languages. The term “fourth-
generation language” is sometimes used to refer to application generator programs, which might or might
not be programming languages in the technical sense discussed in the first two pages of the Introduction.
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communication among concurrent tasks. Protected data structures, such as Ada 95’s pro-
tected types, are also typical. On the other hand, the basic framework of these languages is
still sequential. Fourth-generation languages typically also have a dynamically scoped ex-
ception mechanism for handling both system- and user-defined errors.

The data structure constructors of this generation are similar to those of the third gen-
eration, except that some problems (e.g., array parameters) have been corrected. Name equiv-
alence is the rule in the fourth generation, although there are numerous exceptions to make
it secure yet convenient. The primitive data structures tend to be more complicated than in
the third generation, because of the desire to control accuracy and precision in numeric types.

Finally, the syntactic structures of the fourth generation are largely those of the second
and third, that is, they are in the Algol/Pascal tradition. The major exception is a preference
for fully bracketed structures.

In summary, the fourth generation can be seen as the culmination and fulfillment of the
evolutionary process that began with FORTRAN. Although these languages are far from per-
fect, it is difficult to see how substantial improvements can be made to them without a rad-
ical change of direction. Does this mean that programming language evolution is at an end?
Hardly.

Fifth-Generation Programming Languages

We have now entered the fifth generation of programming language design. Nobody yet
knows what the dominant programming ideas of this generation will be. Many bold experi-
ments are in progress, but their outcome is still uncertain. Therefore, in the remainder of this
book we investigate three possible candidates for the programming paradigm of the future.
These are function-oriented programming, object-oriented programming, and logic-oriented
programming. The use of the word “oriented” indicates that each of these paradigms is or-
ganized around a comprehensive view of the programming process. Each attempts to push
its view to the limit. Which, if any, will become dominant it is too early to say. Perhaps it
will be some synthesis of them all.

1.  Attack or defend this statement: Position-independent arguments are worthless; no proce-
dure should have so many parameters that it needs them, since a large number of param-
eters results in a very wide interface.

2. Ada is unique among programming languages in that the designers have recorded many of
the reasons for their design decisions (“Rationale for the Design of the ADA Programming
Language,” SIGPLAN Notices 14, 6, June 1979; Intermetrics, Ada 95 Rationale, 1995).
Write a critique of one chapter of one of the Ada Rationales.

3. Compare the tasking facilities of Ada with those of Concurrent Pascal (P. Brinch Hansen,
“The Programming Language Concurrent Pascal,” IEEE Trans. Software Engineering 1,
2, June 1975).

4. In the Ada 83 Rationale it is asserted that path expressions (R. H. Campbell and A. N.
Habermann, “The Specification of Process Synchronization by Path Expressions,” Lecture
Notes in Computer Science 16, Springer, 1974) can be easily expressed in Ada. Show that
this is true.
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Read and critique Hoare’s “Communicating Sequential Processes” (Commun. ACM 21,8,
August 1978).

Read and critique J. B. Goodenough’s “Exception Handling: Issues and a Proposed Nota-
tion” (Commun. ACM 18, 12, December 1975). Compare the proposal in this paper with
Ada’s mechanism.

Ada’s use of a semicolon as a terminator rather than a separator is based on research by
Gannon and Horning (“Language Design for Programming Reliability,” IEEE Trans. Soft-
ware Engineering 1, 2, June 1975). Critique their paper.

. Read and critique the revised “JRONMAN” specifications (“Department of Defense Re-

quirements for High Order Computer Programming Languages,” SIGPLAN Notices 1 2,12,
December 1977).

. Read the revised “IRONMAN” specifications (see Exercise 8) and decide how well Ada

83 met them.

Read and critique Hoare’s Turing Award Paper (“The Emperor’s Old Clothes,” Commun.
ACM 24, 2, February 1981).

Read and critique a proposal for decreasing Ada’s size (e.g., H. F. Ledgard and A. Singer,
“Scaling Down Ada [Or Towards a Standard Ada),” Commun. ACM 25, 2, February 1982).

Shaw, Hilfinger, and Wulf designed the language Tartan to “determine whether a ‘simple’
language could meet substantially all of the Ironman requirement.” Read and critique the
papers on Tartan (“TARTAN—Language Design for the Ironman Requirement,” SIGPLAN
Notices 13, 9, September 1978).



